1 We want to show that the r-neighborhood

$$
\begin{aligned}
& \text { ighborhood } \\
& D\left(z_{0} j r\right)=\frac{\left\{z| | z-z_{0} \mid<r\right\}}{\{ } .
\end{aligned}
$$

is open.
Write $D=D\left(z_{0} ; r\right)$
for notational simplicity.
Pick some $z \in D$.
We now show z is an interior point of D and since z was arbitrarily chosen,
 D is open.
Set $\varepsilon=r-\left|z-z_{0}\right|$. (See the picture.)
We will show that $D_{1}=D(z ; \varepsilon) \subseteq D$ which shows that z is an Rentcior point $D_{1}=\{w| | w-z \mid<\varepsilon\}$)
Then $\left|w-z_{0}\right|=\left|w-z+z-z_{0}\right| \leq$

$$
\begin{aligned}
& \text { en }\left|w-z_{0}\right|=|w-z|+\left|z-z_{0}\right|<\varepsilon+\left|z-z_{0}\right| \\
& \leq\left|w-z_{0}\right|=r_{1} w \in D_{1} \\
& =r-\left|z-z_{0}\right|+\left|z-z_{0}\right|
\end{aligned}
$$

So, $\left|w-z_{0}\right|<r$ and hence $w \in D . S_{0}, D_{1} \subseteq D$.
$2(a) S$ is open but not closed.
Why? By problem 1, the r-neighborhood

$$
\begin{aligned}
& r \text {-neighborhood } \\
& S=\{z|\quad| z \mid<2\}=D(0 ; 2)
\end{aligned}
$$

is open.
Is S closed? No.

Let $T=\mathbb{C}-S$, the complement of S. For S to be closed we would need T to be open.
But it isn't.
For example $z \in T$ but
2 is not an interior point of T since any ε-neighborhood of 2 contains
 points outside of T. Ie, 2 is on the of T. See the next page why this is true.

Let's see how we could prove this formally.

Let $r>0$.
We show that

$$
D=D(2 ; r)
$$

is not
completely
contained
in T no mattes

what r is.
So, 2 is net an interior point of T and T is not open.
We may assume that $r<1$ since shrinking ε Let $z=2-\frac{r}{2} . \quad\left[\begin{array}{l}\text { just makes a } \\ \text { smaller dis } c \text {. }\end{array}\right.$
Then $|z-2|=\left|-\frac{r}{2}\right|=\frac{r}{2}<r$. So, $z \in D(2 ; r)$,
Note that $2-\frac{r}{2}$ is a real number and

$$
\begin{aligned}
& \text { Note that }[\text { since } r<1] \text {. So, } \\
& 2-\frac{r}{2}>0 \quad r 1=2-\frac{r}{2}<2 \text {. }
\end{aligned}
$$

$|z|=\left|2-\frac{r}{2}\right|=2-\frac{r}{2}<2$. So, $z \notin T_{\text {. }}$
Since $z \in D(2, r)$ but not in T, and r was arbitrary, 2 is not point of of T.
$2(b)$ Let $S=\{z \in \mathbb{C}| | z \mid \leqslant 1\}$.
Let's first show that S is not open.
Consider $1 \in S$.
Let $r>0$ and consider $D(1 ; r)$.
Then $1+\frac{r}{2} \in D(1 ; r)$
but $1+\frac{r}{2} \notin S$.
So there is n_{0} disc $D(1, r)$
 totally contained ins.
Thus, $1 \in S$ but 1 is not an interior point of S
So, S is not open.

We show that S is closed. We give two methods method 1
Let $T=\mathbb{C}-S=\{z| | z \mid>1\}$
If we show that T is open then S is closed.
Pick some $z \in T$.
Let $r=|z|-1$.
Consider the disc

$$
D(z ; r)
$$

We will show
that $D(z ; r) \subseteq T$, and so then
z is an interior point of T. Since z is arbitrary this shows that T is open.
Let $w \in D(z j r)$
We will show that $|w|>1$ and hence $w \in T$. Suppose instead that $|w| \leq 1$.
If that were the case then

$$
\begin{aligned}
& \text { If that were the case then } \\
& \begin{aligned}
&|z|=|z-w+w| \leq|z-w|+|w| \\
&<r+|w| \\
&=|z|-1+|w| \\
& \leq|z|-1+1 \leq|z| \\
& \text { since } \\
&\leq \mid z ; r)
\end{aligned}
\end{aligned}
$$

But then $|z|<|z|$. Contradiction. Hence $|\omega|>\mid$ and $\omega \in T_{i}$ so
method 2
Here's another way to show that $T=\mathbb{C}-S=\{z| | z \mid>1\}$ is open and hence $S=\{z| | z \mid \leq 1\}$ is closed.

Let $z \in T$
Let $r=|z|-1$. picture as the

Since $|z|>\mid$ we have that $r>0$,
We will show that $D(z ; r) \subseteq T$ and hence z is an interior point of T. This will imply that T is open since z was arbitrary.
Let $w \in D(z ; r)$.
Then $|z-w|<r$.
Thus, $\quad|z|=|z-w+w| \leq|z-w|+|w|$

$$
\begin{aligned}
& \leq|z-w|+|\omega| \\
& <r+|w|=|z|-|+|w|
\end{aligned}
$$

So, $|z|<|z|-1+|w|$.
Thus, $1<|w|$.
So, $w \in T$.
Thus, $D(z ; r) \subseteq T$ as we wanted.
$[2(c)] \quad S=\{z \in \mathbb{C} \mid \quad \operatorname{Im}(z)>0\}$
S is open. S is not closed.
Let's show S is open.
Let $z=x+i y \in S$.
We must show that z
is an interior point of S.

since $z \in S$ we know $y=\operatorname{Im}(z)>0$.
Let $D=D(z ; y)$
If we show that $D \subseteq S$ then this shows that z is an interior point of S.
Suppose $w \in D . \quad[D=D(z ; y)=\{\omega| | \omega-z \mid<y\}]$ we must show that $w \in S$.
Then $|\omega-z|<y$.
Suppose $\omega=x^{\prime}+i y^{\prime}$.
Plugging $w=x^{\prime}+i y^{\prime}$ and $z=x+i y$ into $|w-z|<y$ gives

Thus,

$$
\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}<y^{2}
$$

Thus, $\left(y^{\prime}-y\right)^{2}<y^{2}-\left(x^{\prime}-x\right)^{2}$
But $\left(x^{\prime}-x\right)^{2} \geqslant 0$, thus $y^{2}-\left(x^{\prime}-x\right)^{2} \leqslant y^{2}$.
Thus, $\left(y^{\prime}-y\right)^{2}<y^{2}-\left(x^{\prime}-x\right)^{2} \leqslant y^{2}$.
So, $\left(y^{\prime}-y\right)^{2}<y^{2}$.
Thus, $\sqrt{\left(y^{\prime}-y\right)^{2}}<\sqrt{y^{2}} \frac{4}{4}=y$

$$
L \sqrt{t^{2}}=|t| \quad \text { since } y>0
$$

So, $\quad\left|y^{\prime}-y\right|<y$
Thus, $-y<y^{\prime}-y<y$.
recall: If $a, b, c \in \mathbb{R}$ and $c>0$,

So, $0<y^{\prime}<2 y$.
Thus, $0<y^{\prime}=\operatorname{In}(\omega)$.
Note: You d. part of this
So, $w \in S$.
Thus, $D \subseteq S$.
So, z is an inthiur point of S.
So, S is open.
Use:

$$
\begin{aligned}
\left|y^{\prime}-y\right| & =|\operatorname{Im}(\omega)-\operatorname{Im}(z)| \\
& =|\operatorname{Im}(\omega-z)| \\
& \leq|w-z| \\
& <y
\end{aligned}
$$

Thus, $\left|y^{\prime}-y\right|<y$.
Then proceed as before

We show that S is not closed, Let $T=\mathbb{C}-S=\{z \mid \operatorname{Im}(z) \leq 0\}$.
Then, $o \in T$.
We show that O is not an interior point of T and hence T is not open. Let $r>0$.
Let's show $D(0 ; r) \notin T$,
Consider $\omega=\frac{r}{2} i$.
Then, $|w-0|=\left|\frac{r}{2} i\right|=\left|\frac{r}{2}\right||i|$

$$
=\frac{r}{2}<r .
$$

Thus, $w \in D(0 ; r)$.
However, $\operatorname{Im}(\omega)=\operatorname{Im}\left(0+\frac{r}{2} \lambda\right)=\frac{r}{2}>0$.
So, w $\notin T$.
nus, $D(0 ; r) \nsubseteq T$.
$2(d)$

$$
S=\{z \in \mathbb{C} \mid \operatorname{Im}(z) \geqslant 0\}
$$

Let's show that S is not open.
Note that $0 \in S$,
We will show that O is not an interior point of S and so
 S is not open.
We will show that no disc centered at O is completely contained in S.
Let $r>0$. Consider $D(0 j r)$.
Let $w=-\frac{r}{2} i$.
Note that $\underbrace{\left.|w-0|=\left|-\frac{r}{2} i\right|=\left|-\frac{r}{2}\right||i|=\frac{r}{2}<r \quad{ }_{z}<r \right\rvert\,}_{\text {distance between } w \text { and } 0}$
So, $w \in D(0, r)$
And, $\operatorname{Im}(w)=\operatorname{Im}\left(0-\frac{r}{2} \bar{i}\right)=\frac{-r}{2}<0$.
So, $w \notin S$.
Thus, no matter what $r>0$ we pick $D(0 ; r) \notin S$.
So, $w \notin S$. So, $O \in S$ but not an interior point of S. So, S is not open.
S is closed.
$T=T-S$ is open
The proof is the same as how we showed the s in 2(c) is opens
 except you'll reed to look at $-y$ instead of y in your picture.
$2(e) S=\{z \in \mathbb{C} \mid 2 \leqslant \operatorname{Re}(z) \leqslant 3\}$
Let's show that S is not open.
Consider $2 \in S$.
We will show that 2 is not an interior point of S. And this shows S is not open.
Let $r>0$.
We show $D(2 ; r) \nsubseteq S$.

Let $x=2-\frac{r}{4}$.
Then, $|x-2|=\left|2-\frac{r}{4}-2\right|=\left|-\frac{r}{4}\right|=\frac{r}{4}<r$
So, $x \in D(2 ; r)$.
But $\operatorname{Re}(x)=\operatorname{Re}\left(2-\frac{r}{4}+i 0\right)=2-\frac{r}{4}<2$
So, $x \notin S$.
You could also
Thus, $D(2 ; r) \nsubseteq S$. use $x=2-\frac{r}{2}$

$$
\begin{aligned}
& 0 r \\
& x=2-\frac{3}{2} r
\end{aligned}
$$

or
other choices

$$
\frac{S \text { is closed }}{\text { since } T=\mathbb{C}}
$$

$$
\text { since } T=\mathbb{C}-S
$$

is open.
This proof would be in two parts.
Show the
left side is

open and then
show the right
side is open [like in in 2(c)] but more complicated

Then the union of the two open sets is open and is T.
$3(a) \mathbb{C}$ is open.
Why?
Let $z \in \mathbb{C}$.
Then $D(z ; 1) \subseteq \mathbb{C}$.
So, z is an interior point of \mathbb{C}.
Since z was arbitrary,

\mathbb{C} is open.
(you donlt need to pick 1 as
your radius, you could pick any $r>0$).
$3(b)$
In logic a statement

$$
(\forall x \in S)(P(x))
$$

is true when $P(x)$ is true for every $x \in S$.
Think about the def of open: $S \subseteq \mathbb{C}$ is open if the following is true: $(\forall z \in \mathbb{C})($ If $z \in S$, then z is an interior)
What if $S=\phi$? We have this statement: $(\forall z \in \mathbb{C})($ If $\underbrace{z \in \phi}$, then z is an interior $\begin{array}{c}\text { point of } s\end{array})$ always false
If P, then Q always true since p is always false The overall statement is twee, so ϕ is open.
$3(c) \mathbb{C}$ is closed be cause $\mathbb{C}-\mathbb{C}=\phi$ is oren $(b y 3(b))$

3(d) ϕ is closed because $\mathbb{C}-\phi=\mathbb{C}$ is open $(b y 3(a))$.
$3(e)$ Let $z_{0} \in \mathbb{C}$.
Let $S=\left\{z_{0}\right\}$.
Let $T=\mathbb{C}-S=\mathbb{C}-\left\{z_{0}\right\}$
we want to show that T is open.
Let $z \in T$.
We want to show that z is an interior point of T.
Let $r=\left|z-z_{0}\right|$.
Let $D=D(z ; r)$.
We want to show that $D \subseteq T$.

Let $w \in D=D(z ; r)=\{w| | w-z \mid<r\}$.
Then $|w-z|<r$.
To show that $w \in T$ we need to show that $w \neq Z_{\text {。 }}$

Suppose $w=Z_{0}$.
since $w \in D$
Then

$$
r=\left|z-z_{0}\right|=|z-w|<r
$$

So, $r<r$
Contradiction.
Thus, $\omega \neq z_{0}$.
So, $w \in T=\mathbb{C}-\left\{z_{0}\right\}$.
Thus, $D \subseteq T$.
So, z is an interior point of T
so, T is open.
$3(f)$ Let A and B be open sets in \mathbb{C}. If $A \cap B=\phi$, then $A \cap B$ is open by problem $3(b)$.
Hence, we may assume $A \cap B \neq \phi$.
Let $z \in A \cap B$.
We show that
Z is an interior point of $A \cap B$.
Since $z \in A$ and A.
we have that A is open, interior point of A is an

$$
\text { So, } \exists r_{1}>0
$$

So that

$$
\begin{aligned}
& \text { So that } \\
& D\left(z ; r_{1}\right) \leqslant A
\end{aligned}
$$

Similarly, since $z \in B$ and B is open then $\exists r_{2}>0$ with

$$
\left.\begin{array}{l}
\text { th } \\
D\left(z ; r_{2}\right) \subseteq B . \\
t r=\min \left\{r_{1}, r_{2}\right\}
\end{array}\right\} \text {, }
$$

Then,

$$
D(z ; r) \subseteq D\left(z ; r_{1}\right) \subseteq A \text { and } D(z ; r) \subseteq D\left(z ; r_{2}\right) \subseteq B
$$

So, $D(z ; r) \subseteq A \cap B$. So, z is an interior point of $A \cap B$,
$3(\mathrm{~g})$ Let A and B be closed subsets of \mathbb{C}. Then
$\mathbb{C}-A$ is open and
$C-B$ is open.
Thus,

$$
\begin{aligned}
& \text { De Morgan set the or y } \\
& (A \cup B)^{c}=A \cap B B^{c}
\end{aligned}
$$

$$
\text { Lues, } \mathbb{C}-(A \cup B)=\frac{(D e(\mathbb{C}-A) \cap(\mathbb{C}-B)}{\left(\mathbb{C}(A \cup B)^{\circ}=A^{\wedge} \cap B\right)}
$$

By $3(f)$ we have that $\mathbb{C}-(A \cup B)$ is open.

